

Fasteners for thin sheet metal

Anchor® Clifa®

Fastening technology from KerbKonus are in successful applications in a wide variety of different industrial sectors around the world.

State-of-the-art production facilities provide our customers with the assurance of quality and reliable delivery, and sophisticated fastening solutions for every conceivable field of application are implemented by our own Research and Development Department.

Close cooperation and exchange of experience and expertise on an international level ensure that our company stays at the cutting edge of technological development.

With independent branches and agencies operating in a number of countries around the world we are a truly reliable partner when it comes to secure fastening technology.

... our products and services

Depending on the required anchoring method in the material, KerbKonus offers a variety of threaded insert options:

- self-tapping threaded inserts for metal, wood and plastics,
- Threaded inserts for cold embedding
- Threaded inserts for hot or sound embedding
- Threaded inserts for screwing into an internal thread
- Threaded inserts for riveting

Alongside its long-standing, proven spectrum of threaded for a wide variety of applications, KerbKonus also offers fastening technology-related products and services:

- Punched rivet system for thin mouldings
- Screw locking
- Thread sealing systems
- Insulating plastic coating

Kerb-Konus-Vertriebs-GmbH

Wernher-von-Braun-Straße 7 Gewerbegebiet Nord 92224 Amberg

+49 9621 679-0 Phone +49 9621 679444 Fax e-mail

KKV-Amberg@kerbkonus.de

Internet www.kerbkonus.de If you have a specific problem related to the field of fastening technology – with its rich fund of expertise and comprehensive product range, KerbKonus has the solution for you.

Technical details on KerbKonus products are also provided on our homepage: www.kerbkonus.de

To access design data, go to the download portal of our website. Here, you will be able to download product data in any required formats or as CAD files.

Threaded inserts for thin sheet metal parts ...

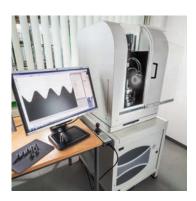
What really counts: tested quality.

At our parent plant in Amberg, we produce threaded inserts using efficient production methods. A team of qualified and highly motivated staff guarantees a consistent, high standard of production.

The number of products manufactured over the company's history reaches into the billions. State-of- the- art automation lines manufacture around the clock in a precise and high standard of quality. The efficient and low-cost production of large-scale product series is one of the strenghts on which we have based our success.

But our high-volume production output in no way compromises flexibility. We are able to quickly and efficiently produce even small batches of nonstandard items.

Our state of the art stock control system permits the reliable, prompt delivery of standard products, keeping your production running to schedule at all times and helping to minimize your warehousing costs.


We are particularly proud of a cost-toperformance ratio which ensures satisfied customers the world over. This has made KerbKonus a reputable and respected partner to industry in the global marketplace.

Quality and environment are top priority issues at KerbKonus. Quality consciousness is a continuous thread running through every aspect of the company's work and all its products and services. Quality is lived and breathed at Kerb-Konus.

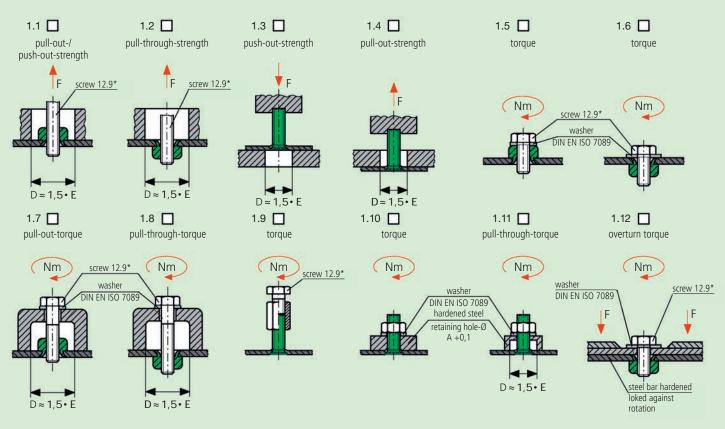
As manufacturer in the metal processing industry we are aware of our responsibility for an environmentally compatible production. With this in mind we follow up a policy of sensible resource spending and environmental friendly production both in our process engineering and our product range.

Quality System DEKRA Certificat in accordance with ISO 9001:2015 Reg.No. 30507428 ISO 14001:2015 Reg.No. 170507049 ISO 50001:2011 Reg.No. 181115119

Applications on the test stand ...

Threaded inserts from KerbKonus are manufactured in large piece numbers. Human lives and safety can often depend upon these tiny components, for instance in the case of airbag receiving fasteners.

Because we bear this heavy responsibility, our products are tested and monitored in line with the most stringent directives. In the case of particularly critical applications, each and every part is exhaustively tested on state-ofthe-art test equipment before it is delivered to you e.g. dimensional check, foreign particles. For Example: – dimensional check


foreign particles

Test methods

The loading capacity of a thread depends primarily on the surface shell of the component which is exposed to shearing stress.

By selecting just the right threaded insert for each application, maximum reliability can be achieved. Using tried and tested, practically oriented test methods (see the table below) set of reliable specifications to ensure safe, reliable compliance with any application requirement, however unusual. In most cases, this can even be achieved using standard threaded inserts.

Note: *Because the connection elements often achieve higher stress values compared with components of strength class 12/12.9, at KKV testing is generally conducted using testing pin 14.9 and/or hardened circular blank.

Anchor[®]– serrated rivet bushing ...

The Anchor[®] rivet bushing is a threaded insert made of steel or rustproof material, brass or light alloy with a counterbored and serrated shank.

Anchor[®] is riveted into thin-walled moulded parts with pre-punched receiving holes. During this process, the riveted serrations of the shank cut into the side wall, creating an absolutely secure fastening.

The special shape of the shank and the countersinking at the bottom protect the thread from damage during installation. In almost all application cases, overload testing indicated that Anchor® remains firmly seated even if the thread is completely overtorqued.

Fields of application

Anchor[®] rivet nuts can be applied universally. They provide a multitude of constructive solutions for robust screw fittings. Anchor[®] is used in almost all fields of the metal processing industry, for example in the automotive, railway and electrical fields.

Product features

- Anchor[®] is torque-resistant and capable of loads applied from both sides.
- Anchor[®] can be used in surfacetreated, ready-plated parts, so eliminating the need for time-consuming cleaning of internal threads and reworking damage at the surface.
- When turning in the screw, it is impossible for the Anchor[®] to be forced out of the hole. This saves incalculable time losses.
- Anchor[®] sits with a precise centric fit without the use of templates or other positioning devices.
- Anchor[®] is also suitable for application in high-quality materials.

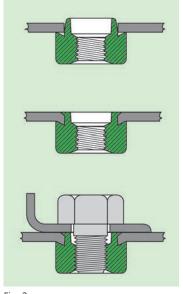


Fig. 2

Specifications

Works Standard sheets 701 to 758, page 9 to 11.

On request:

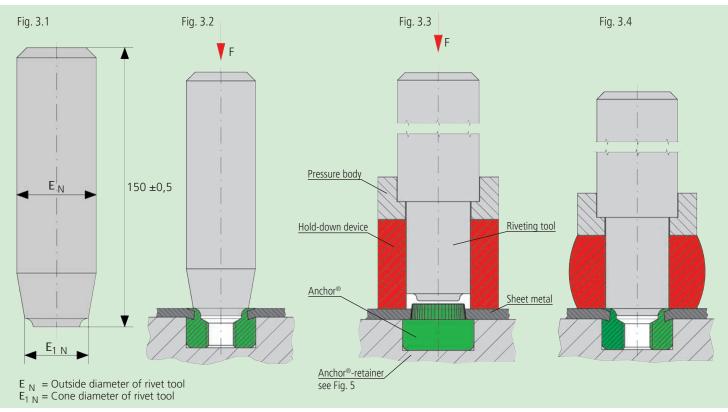
Anchor[®] with TufLok[®] screw lock in the female thread. The captive plastic coating serves as a security against the screw working loose.

Anchor $^{\ensuremath{\circledast}}$ with sealing agent precote 5 on the support surface.

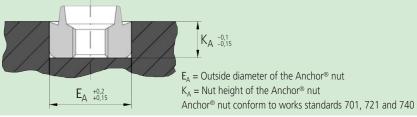
Special request

We recommend

Space and weight-saving design	Anchor [®] -Mini with small outer dimensions (Works Standard 721 to 738)
Thread closed on one side	Anchor [®] -Blind with blind thread (Works Standard 741 to 758)
Distanced fixture	Anchor [®] in special lengths
Support or bearing function	Anchor [®] without internal thread (special version)
Flush finish to the surface of the metale	No bead required in the component material.
Loading on both sides	Anchor [®] can be loaded from both sides, it is practically impossible for Anchor [®] to be levered out. Lower load values are achieved with screwing at the head side.
Can also be processed in FRP	Delamination is largely avoided in fibre-reinforced plastic (FRP).



Anchor[®]– installation ...


Fig. 3

Installation

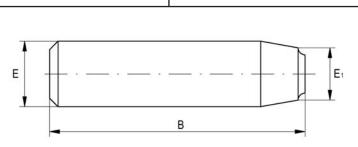
Punch, lasing or drill hole, insert anchor and rivet the shank with a simple riveting tool (Fig. 3.2).

- using a simple press
- by inserting Anchor[®] and riveting using a tumble or radial riveting process
- automatic feed in follow-on tools
- to prevent deformation of thin mouldings, use a tool with holdingdown device (Fig. 3.3 and 3.4).

Riveting for in sheet stee		cation	-	Riveting force for application in stainless steel sheet		
M 2 to M 3 M 3,5 to M 4 M 5 M 6 M 8 M 10 M 12 to M 16	appr. 15 to 20 to 22 to 30 to 45 to 65 to 80 to	27 kN 30 kN 42 kN 54 kN 81 kN 97 kN 160 kN	M 2 to M 3 M 3,5 to M 4 M 5 M 6 M 8 M 10 M 12 to M 16	appr. 15 to 20 to 25 to 40 to 80 to 120 to 140 to	33 kN 40 kN 50 kN 75 kN 120 kN 150 kN 230 kN	The required riveting force must be determined by trial and error. For different material qualities and surfaces, higher press-in force may be required. The firmest fit is achieved if the recommended hole diameters and tolerances are precisely adhered to.
Fig. 4						

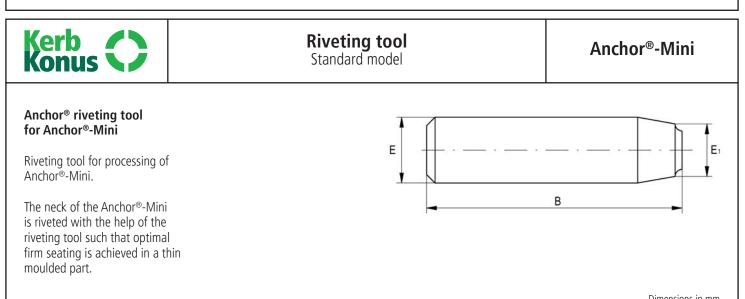
Dimensions of the Anchor® mounting

Animation


Riveting tool Standard model

Anchor® Anchor®-Tanktyp

Anchor[®] riveting tool


Riveting tool for processing of Anchor[®].

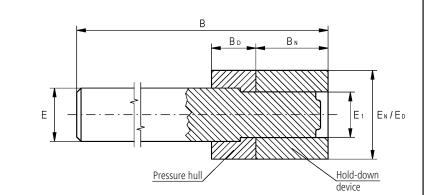
The neck of the Anchor® is riveted with the help of the riveting tool such that optimal firm seating is achieved in a thin moulded part.

Dimensions in mm

Article number	Thread measurement	External diameter	Cone diameter	Length
	А	E	E1	B ±0,5
401 000 020. 000	M 2 / M 2,5 / M 3	12	7,1	150
401 000 035. 000	M 3,5 / M 4	12	8,7	150
401 000 050. 000	M 5	16	10,3	150
401 000 060. 000	M 6	16	11,9	150
401 000 080. 000	M 8	20	15,5	150
401 000 100. 000	M 10	20	18,3	150
401 000 120. 000	M 12 / M 14 / M 16	25	22,2	150

Article number	Thread measurement	External diameter	Cone diameter	Length
	А	Е	E1	B ±0,5
421 000 020. 000	M 2	12	4,8	150
421 000 025. 000	M 2,5 / M 3	12	5,5	150
421 000 035. 000	M 3,5 / M 4	12	7,1	150
421 000 050. 000	M 5	12	8,7	150
421 000 060. 000	M 6	12	10,3	150
421 000 080. 000	M 8	12	11,5	150

Anchor® Anchor[®]-Tanktyp


Anchor[®]-Mini

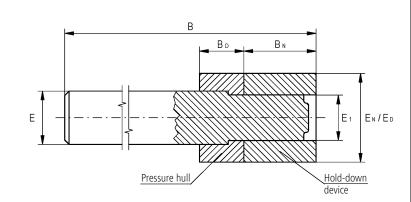
Anchor[®] Riveting tool with hold-down device

Riveting tool for processing of Anchor®.

The neck of the Anchor® is riveted with the help of the riveting tool such that optimal firm seating is achieved in a thin moulded part.

The hold-down device serves to prevent deformation of the moulded part.

						C	imensions in mm
Article number	Thread measurement	External diameter	Shaft diameter	Hold-down device	Pressure hull	Hold-down device/ pressure hull	Length
	А	E	E1	B _N	BD	E _N /E _D	B ±0,5
406 000 020. 000	M 2 / M 2,5 / M 3	12	7,1	16,5	10	20	150
406 000 035. 000	M 3,5 / M 4	12	8,7	16,5	10	20	150
406 000 050. 000	M 5	16	10,7	22,5	10	25	150
406 000 060. 000	M 6	16	12,5	22,5	10	25	150
406 000 080. 000	M 8	20	15,7	22,5	10	32	150
406 000 100. 000	M 10	20	18,5	25	10	32	150
406 000 120.000	M 12 / M 14 / M 16	25	22,5	25	10	32	150


Riveting tool with hold-down device

Anchor® Riveting tool with holddown device for Anchor®-Mini

Riveting tool for processing of Anchor[®]-Mini.

The neck of the Anchor®-Mini is riveted with the help of the riveting tool such that optimal firm seating is achieved in a thin moulded part.

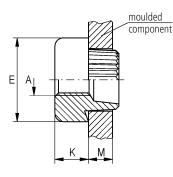
The hold-down device serves to prevent deformation of the moulded part.

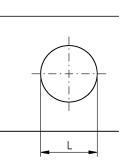
						C	imensions in mm
Article number	Thread measurement	External diameter	Shaft diameter	Hold-down device	Pressure hull	Hold-down device/ Pressure hull	Length
	А	E	E1	BN	Bo	En/Ed	B ±0,5
426 000 020. 000	M 2	12	4,8	16,3	10	20	150
426 000 025. 000	M 2,5 / M 3	12	5,5	16,3	10	20	150
426 000 035. 000	M 3,5 / M 4	12	7,1	16,3	10	20	150
426 000 050. 000	M 5	12	8,7	16,3	10	20	150
426 000 060. 000	M 6	12	10,3	16,3	10	20	150
426 000 080. 000	M 8	12	11,5	22,3	10	25	150

Rivet Bushing

serrated

Anchor® Works Standard


701 0 to 718 0


Application

Anchor[®] is a rivet bushing for captive, torque-resistant screw connections capable of withstanding loads from both sides in thin-walled workpieces (0,5 to 5 mm thickness).

The Anchor® is suitable for thinwalled moulded components made of - steel,

- alloy,
- NF metals and
- plastic.

Dimensions in mm for sheet metal Article no. Internal External Nut heigth Recommended Article no. of the second of the thickness thread diameter hole diameter and third group first group Μ Α E Κ L + 0.1of digits of digits ... 000 020 ... M 2 3,2 6,0 0,5 to 0,6 1) 8,0 701 0,7 ... 000 025 ... M 2,5 8,0 3,2 6,0 702 1) 0,8 ... 000 030 ... M 3 8,0 3,2 6,0 703 1) 7,0 704 000 035 ... 9,5 3,8 0,9 to 1,0 1) M 3,5 ... 000 040 ... 705 1,1 to 1,3 1) M 4 9,5 3,8 7,0 ... 000 050 ... 706 1,4 to 1,6 1) M 5 11,0 4,4 8,4 ... 000 060 ... 12,5 5,7 9,7 707 1,7 to 1,9 2) M 6 ... 000 080 ... 708 2,0 to 2,2 2) M 8 16,0 6,4 13,2 709 2.3 to 2.5 2) ... 000 100 ... M 10 19,0 7,6 15,5 710 000 120 ... M 12 25.4 10.2 19,6 2,6 to 2,8 2) 711 2.9 to 3.1 2) ... 000 140 ... M 14 25,4 10,2 19,6 ... 000 160 ... 10,2 712 3,2 to 3,4 2) M 16 25,4 19,6 713 3,5 to 3,7 2) 714 3,8 to 4,0 2)

1) Shoulder 20° undercut 2) Surfaced shoulder

Exemple for finding Anchor® serrated rivet bushing with female thread M5; steel, zinc plated, the article number transparent thick film passivated for sheet thickness 2 mm (sheet steel) Anchor® 708 000 050.112 *)

Materials

715

716

717

718

4,1 to 4,3 2)

4,4 to 4,6 2)

4,7 to 4,9 2)

2)

5,0

Steel, oiled, unrefined

Steel, zinc plated, blue passivated Steel, zinc plated, transparent thick film passivated Stahl, zinc-nickel plated, transparent passivated Stainless steel 1.4305 Light alloy Brass

Article no. (**fourth** group of digits) 100 Article no. (**fourth** group of digits) 110 Article no. (**fourth** group of digits) 112 Article no. (**fourth** group of digits)143 Article no. (**fourth** group of digits) 800

Other materials and designs (e.g. nut height, shank lengths of deviating sheet metal thicknesses) on request.

Tolerances ISO 2768-m

Thread Internal thread A: as per ISO 6H

*) Remark For applications in high-strength steel sheet or stainless steel sheet, or when using the stainless steel rivet nut, we recommend – for flush riveting – the rivet nut of the next smallest shank length. Example: 707 000 050.112 (sheet thickness: 2 mm stainless steel sheet or high-strength steel sheet).

Rivet Bushing

serrated

Anchor[®]-Mini Works Standard 721 0 to 738 0

Application

Article no.

of the

first group

of digits

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

Anchor[®]-Mini is a rivet bushing for captive, torque-resistant screw connections capable of withstanding loads from both sides in thin-walled workpieces (0,5 to 5 mm thickness) made of

0,7

0,8

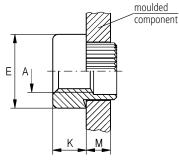
3,2 to 3,4 2)

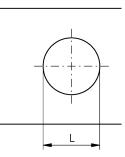
3,5 to 3,7 2)

3,8 to 4,0 2)

4,1 to 4,3 2)

4,4 to 4,6 2)


4,7 to 4,9 2)


2)

5,0

- steel.
- light alloy,
- NF metals and,
- plastic.

The Anchor®-Mini is particularly weight and space-saving due to its minimal outside dimensions.

Dimensions in mm

for sheet metal Article no. Internal External Nut height Recommended thickness thread hole diameter of the second diameter and third group L +0.05 Μ Ε Κ Α of digits ... 000 020 ... 3.5 0,5 to 0,6 1) M 2 5.0 2.3 ... 000 025 ... M 2,5 5,5 2,8 4,2 1) ... 000 030 ... M 3 2,8 4,2 5,5 1) 0,9 to 1,0 1) ... 000 035 ... M 3.5 7.0 3.2 5.5 ... 000 040 ... 5,5 1,1 to 1,3 1) M 4 7,0 3,2 1,4 to 1,6 1) ... 000 050 ... M 5 8,5 3,8 6,5 ... 000 060 ... M 6 10,0 7,7 1,7 to 1,9 2) 5,1 ... 000 080 ... 6,5 2,0 to 2,2 2) M 8 12,0 9,7 2,3 to 2,5 2) 2.6 to 2.8 2) For optimum strength values, installation using the tumble or radial rivetting process is 2,9 to 3,1 2)

recommended.

1) Shoulder 20° undercut

2) Surfaced shoulder

Exemple for finding Anchor®-Mini serrated rivet bushing with female thread M5; steel, zinc plated, transparent thick film passivated for sheet thickness 2 mm (sheet steel) Anchor®-Mini 728 000 050.112 *) **Materials** Steel, oiled, unrefined Article no. (**fourth** group of digits) 100 Steel, zinc plated, blue passivated Steel, zinc plated, transparent thick film passivated Article no. (**fourth** group of digits) 112 Stahl, zinc-nickel plated, transparent passivated Article no. (**fourth** group of digits) 143 Stainless steel 1.4305 Article no. (**fourth** group of digits) 500 Light alloy Brass Other materials and designs (e.g. nut height, shank lengths of deviating sheet metal thicknesses) on request. **Tolerances** ISO 2768-m Thread Internal thread A: as per ISO 6H *) Remark For applications in high-strength steel sheet or stainless steel sheet, or when using the stainless steel rivet nut, we recommend - for flush riveting - the rivet nut of the next smallest shank length. Example: 727 000 050.112 (sheet thickness: 2 mm stainless steel sheet or high-strength steel sheet).

Rivet Bushing serrated

Anchor[®]-Blind Works Standard

741 0 to 758 0

Application

754

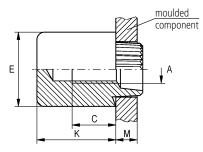
755

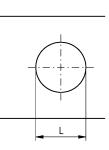
756

757

3,8 to 4,0 2)

4,1 to 4,3 2)


4,4 to 4,6 2)


4,7 to 4,9 2)

Anchor[®]-Blind is a rivet bushing with a threaded blind hole (sealed thread) for captive, torqueresistant screw connections in thin-walled workpieces. (0,5 to 5 mm thickness)

the Anchor® is suitable for thinwalled moulded parts made of - steel,

- light alloy,
- NF metal and
- plastic.

							Dimensions in mm
Article no. of the	for sheet metal thickness	Article no. of the <u>second</u> and third group	Internal thread	External diameter	Nut height	Recommended hole diameter	Thread depth min.
<u>first grou</u> p of digits	М	of digits	А	E	K	L +0,1	С
741	0,5 to 0,6 1)	000 030	M 3	8,0	8,5	6,0	3,0
742	0,7 1)	000 035	M 3,5	9,5	9,0	7,0	4,0
743	0,8 1)	000 040	M 4	9,5	9,0	7,0	4,0
744	0,9 to 1,0 1)	000 050	M 5	11,0	10,0	8,4	5,0
745	1,1 to 1,3 1)	000 060	M 6	12,5	10,5	9,7	5,5
746	1,4 to 1,6 1)	000 080	M 8	16,0	12,0	13,2	5,5
747	1,7 to 1,9 2)	000 100	M 10	19,0	13,5	15,5	6,0
748	2,0 to 2,2 2)	000 120	M 12	25,4	19,0	19,6	7,0
749	2,3 to 2,5 2)				-		
750	2,6 to 2,8 2)						
751	2,9 to 3,1 2)	1) Shoulder 20					
752	3,2 to 3,4 2)	2) Surfaced sh	oulder				
753	3,5 to 3,7 2)						

758 5,0	2)	
Exemple for finding the article number	Anchor [®] -Blind serrated rivet bushing with female thread M5; stee transparent thick film passivated for sheet thickness 2 mm (sheet	
Materials	Steel, oiled, unrefined Steel, zinc plated, blue passivated Steel, zinc plated, transparent thick film passivated Stahl, zinc-nickel plated, transparent passivated Stainless steel 1.4305 Light alloy Brass Other materials and designs (e.g. nut height, shank lengt on request.	Article no. (fourth group of digits)100Article no. (fourth group of digits)110Article no. (fourth group of digits)112Article no. (fourth group of digits)143Article no. (fourth group of digits)500Article no. (fourth group of digits)700Article no. (fourth group of digits)800hs of deviating sheet metal thicknesses)
Tolerances	ISO 2768-m	
Thread	Internal thread A: as per ISO 6H	
*) Remark	For applications in high-strength steel sheet or stainless stainless steel rivet nut, we recommend – for flush riveti shank length. Example: 747 000 050.112 (sheet thickness or high-strength steel sheet).	ng – the rivet nut of the next smallest

Clifa[®] press-in nut/stud ...

Clifa[®]-press-in nuts and Clifa[®] studs are threaded inserts made of steel with a specially formed shank or head.

Clifa[®]-press-in nuts and Clifa[®] studs can also be supplied in rust-proof material, and the nuts additionally in light alloy.

Clifa[®]-threaded inserts are pressed into moulded components with prepunched receiving holes. During this process, the material flows out of the area of the hole wall into the gear ring / the annular grooves of the Clifa[®] threaded inserts. A permanent connection is formed.

Several Clifa[®] inserts can be installed in a single work process. The fastening screw is always screwed in from the opposite side.

Fields of application

Clifa[®] press-in elements serve as a screw point mainly on moulded parts of steel or light metal. They may also be used as spacers.

Product features

- Clifa[®] is torque-proof, capable of withstanding high loads.
- It has minimal outside dimensions for space and weight-saving
- The thread is wear-resistant, clean and true to gauge
- Mounting in drilled, punched or lasered receiving holes
- Do not countersink drill holes in the component
- Can be used in surface-treated, galvanized or unweldable materials
- Clifa[®] is not pressed out during the screwing process.
- The component material must be softer than the Clifa® element

Specifications

Works Standard sheets Clifa[®] Pages 14 to 27.

High-performance installation equip ment for short cycle times in largescale production on request.

Fields of application for the Clifa[®] nut

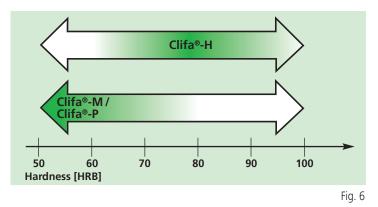
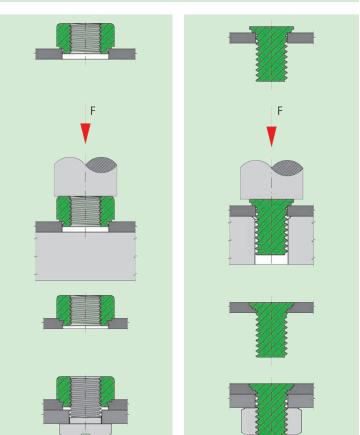


Figure 6 shows in green which nut type can be used for which moulded part hardness. These are guide values which must be confirmed through practical tests.

12

Clifa[®] installation ...

Installation


The receiving hole is punched, lasered or drilled **but not deburred or countersunk**.

Care must be taken with punched holes, make sure that the hole diameter of the press-in side the specified one hole diameter corresponds. The press-in process takes place on a plane parallel basis using a customary press with adjustable pressure level, until the surface of the shoulder in the Clifa® pressin nut comes to rest flat against the surface of the sheet metal.

In the case of the Clifa[®]-SP/SPD and SPS stud, the head must be fully pressed in and come to rest flush with the surface of the sheet metal.

Pressure which is too high or applied only on one side as well as inclined support surfaces must be avoided wherever possible.

Examples for mounting

Press-in nut Clifa®

Fig. 7 Press-in stud Clifa®-SP

Fig. 8

Special request

Press-in nut, fastening on thin-walled moulded part
Such as Clifa-M, only for other feeding systems
Press-in nut, fastening on high-strength moulded part
Press-in nut, standoff bushings on thin-walled moulded part
Press-in nut, standoff bushings for FRP-Composites
Press-in nut, flush surface on the press-in side of the nut element
Press-in stud, flush with surface with quick-fastening thread
Press-in stud, flush with surface
Press-in stud, flush with surface for thin sheet thicknesses
Press-in stud, for high load values
Press-in stud, for high load values and thin sheet thicknesses

We recommend

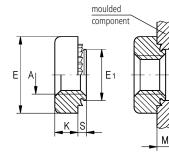
Clifa®-M	Page 14 and page 15
Clifa [®] -P	Page 17
Clifa®-H	Page 16
Clifa [®] -AM	Page 18
Clifa [®] -AL	Page 19 and page 20
Clifa [®] -ABO/-ABG	Page 21 and page 22
Clifa [®] -SPS	Page 23
Clifa [®] -SP	Page 24
Clifa [®] -SPD	Page 25
Clifa [®] -SA	Page 26
Clifa [®] -SAD	Page 27

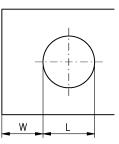
Kerb Konus 💙

Press-in nut for metal – turned version –

Clifa[®]-M Works Standard

500 0 to 503 0


Application


Clifa[®]-press-in nuts are used to create wear-free screw connections capable of withstanding high loads in thinwalled moulded components from 0,8 mm in thickness made of

- light alloy,
- NF metal.

The nut is anchored in the component as a result of the press-in process.

Dimensions in mm

Fields of application, see page 12, fig. 6.

	Article no. of the <u>first grou</u> p of digits	for sheet metal thickness	Shank height max.	Article no. of the <u>second</u> and third group of digits	thread	External diameter	Nut height	Collar	diameter	
		М	S		Α	E	K	E ₁ ±0,05	L +0,05	W
	500 0	0,8 to 1,0	0,7	000 020	M 2	6,0	1,6	4,15	4,2	2,9
M3 to	501 0	1,1 to 1,4	1,0	000 025	M 2,5	6,0	1,6	4,15	4,2	2,9
M5	502 0	1,5 to 2,3	1,3	000 030	M 3	7,0	1,6	4,7	4,75	3,6
	503 0	from 2,4	2,2	000 040	M 4	8,0	2,4	5,35	5,4	3,8
	500 0	1,0 to 1,3	1,0	000 050	M 5	9,0	2,4	6,3	6,35	3,8
M6	501 0	1,4 to 2,3	1,35	000 060	M 6	11,0	4,4	8,7	8,75	4,6
to M8	502 0	2,4 to 3,2	2,2	000 080	M 8	12,5	6,0	10,45	10,5	4,8
1110	503 0	from 3,3	3,0	000 100	M 10	15,0	6,7	12,6	12,7	4,8
	501 0	2,4 to 3,2	2,2							
M10	502 0	3,3 to 6,3	3,0							
	503 0	from 6,4	6,0							

Example for finding the article number

Press-in nut Clifa[®]-M with internal thread M3 made of hardened, zinc plated, transparent thick film passivated steel, for sheet metal thickness 1,8 mm: Clifa[®]-M 502 000 030.112

Materials

Steel hardened, zinc plated, blue passivated Steel hardened, zinc plated, transparent thick film passivated Steel hardened, zinc-nickel plated, transparent passivated Stainless steel 1.4305 Light alloy

Article no. (fourth group of digits)
Article no. (fourth group of digits) 112
Article no. (fourth group of digits)
Article no. (fourth group of digits)
Article no. (fourth group of digits) 700

Other finishes or special shapes on request; standoff bushings see page 18.

Tolerances	ISO 2768-m

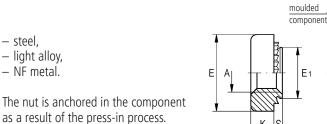
Thread Internal thread A: as per ISO 6H

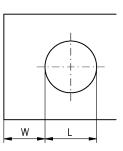
Press-in force as a guideline value for selection of the press.

Clifa®-M, Clifa®-AM, Clifa®-P	For shaped parts made of:				
	Steel				
M 2 / M 2,5	5 to 15 kN				
M 3	5 to 17 kN				
M 4	7 to 20 kN				
M 5	7 to 25 kN				
M 6	15 to 37 kN				
M 8	17 to 40 kN				
M 10	20 to 50 kN				

Animation

Press-in nut for metal


- cold-formed version -


Clifa[®]-M Works Standard

500 3 to 502 3

Application

Clifa®-press-in nuts are used to create wear-free screw connections capable of withstanding high loads in thinwalled moulded components from 0,8 mm in thickness made of

Dimensions in mm

2

Fields of application, see page 12, fig. 6.

- steel,

light alloy,

– NF metal.

	Article no. of the <u>first grou</u> p of digits	for sheet metal thickness	Shank height	Article no. of the <u>second</u> <u>and third grou</u> p of digits	thread	External diameter	height	Collar	diameter	
		≥ M	S		A	E	K	E ₁ ±0,05	L +0,05	W
	500 3	0,8	0,7	300 050	M 5	9,0	2,4	6,3	6,35	3,8
M 5	501 3	1,1	0,95	300 060	M 6	11,0	4,4	8,7	8,75	4,6
	502 3	1,5	1,3	300 080	M 8	12,5	6,0	10,45	10,5	4,8
	500 3	1,0	0,95	300 100	M 10	15,0	6,7	12,6	12,7	4,8
M 6	501 3	1,4	1,35							
	502 3	2,4	2,1							
	500 3	1,0	0,95							
M 8	501 3	1,4	1,35							
	502 3	2,4	2,2							
M 10	501 3	2,4	2,2							

Example for finding	Press-in nut Clifa [®] -M with internal thread M5 made of tempered FK10, zinc plated,
the article number	transparent thick film passivated steel, for sheet metal thickness 1,5 mm: Clifa®-M 502 300 050.112

Materials Steel tempered FK10, zinc plated, blue passivated Article no. (**fourth** group of digits) 110 Steel tempered FK10, zinc plated, transparent thick film passivated Article no. (fourth group of digits) 112 Steel tempered FK10, zinc-nickel plated, transparent passivated

Other finishes or special shapes on request.

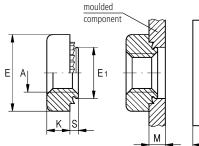
Tolerances ISO 2768-m

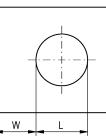
Thread Internal thread A: as per ISO 6H

Press-in force as a guideline value for selection of the press.

Clifa®-M	For shaped parts made of:
	Steel
M 5	7 to 25 kN
M 6	15 to 37 kN
M 8	17 to 40 kN
M 10	20 to 50 kN

Press-in nut


for high-strength metal


Clifa[®]-H Works Standard 501 2

Application

Clifa®-press-in nuts are used to create wear-free screw connections capable of withstanding high loads in thinwalled moulded components (sheet metal thickness see table). The nut is anchored in the component as a result of the press-in process.

Fields of application, see page 12, fig. 6.

Article number	Internal thread	for sheet metal thickness	Shank height	External diameter	Nut height	Collar diameter	Hole diameter	Minimum spacing
	Α	≥M	S	E	К	E1 ±0,05	L +0,05	W
501 200 060	M 6	1,5	1,35	11,0	4,4	8,7	8,75	4,6
501 200 080	M 8	1,5	1,35	12,5	6,0	10,45	10,5	4,8
501 200 100	M 10	2,4	2,2	15,0	6,7	12,6	12,7	4,8

Example for finding the article number

Press-in nut Clifa[®]-H with internal thread M6 made of tempered steel, unrefind for sheet metal thickness 1,5 mm: Clifa[®]-H 501 200 060.231

Materials

Article no. (fourth group of digits) 231

Other finishes on request.

Steel tempered, unrefined - oiled

Tolerances ISO 2768-m

Thread Internal thread A: as per ISO 6H

Trials at customer component are necessary.

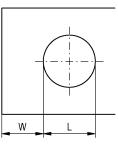
Press-in force as a guideline value for selection of the press.

Clifa® H	Für Formteile aus Stahl
M 6	25 bis 45 kN
M 8	30 bis 50 kN
M 10	35 bis 60 kN

Press-in nut

for metal

Clifa[®]-P Works Standard 500 5 to 502 5


Application

Clifa[®]-press-in nuts are used to create wear-free screw connections in thin-walled moulded components from 0,8 mm in thickness.

Fields of application, see page 12, fig. 6.

component	
	1

moulded

Dimensions in mm

	Article no. of the <u>first grou</u> p of digits	for sheet metal thickness	Shank height	Article no. of the <u>second</u> <u>and third grou</u> p of digits	thread	External diameter E	Nut height K	Collar max. E1	Hole diameter L +0,08	Minimum spacing W
	500 F	≥ M	S	500.040						
M4	500 5	0,8	0,71	500 040	M 4	7,9	2,0	5,38	5,4	3,8
to	501 5	1,0	0,92	500 050	M 5	8,7	2,0	6,38	6,4	3,9
M5	502 5	1,4	1,32	500 060	M 6	11,05	4,08	8,72	8,75	4,2
	500 5	1,2	1,1	500 080	M 8	12,65	5,47	10,47	10,5	4,4
M6	501 5	1,4	1,32	500 100	M 10	16,50	7,9	12,67	12,7	5,6
	502 5	2,3	2,16							
M8	501 5	1,4	1,28							
IVIO	502 5	2,3	2,11							
M10	501 5	1,5	1,38							
IVITO	502 5	2,3	2,11							

Example for finding the article number

Press-in nut Clifa[®]-P with internal thread M4 made of tempered FK10, zinc plated, transparent thick film passivated steel, for sheet metal thickness 1,4 mm: Clifa[®]-P 502 500 040.112

Materials

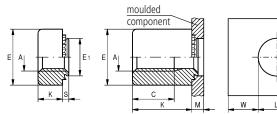
Other finishes or special shapes on request.

Tolerances

Thread Internal thread A: as per ISO 6H

ISO 2768-m

Press-in force Guideline values for press-in force, see page 14


Press-in nut / standoff bushings for metal

Clifa[®]-AM Works Standard

503 8 to 525 8

Application

- Clifa®-press-in nuts/standoff bushings are used to create wearfree screw connections capable of withstanding high loads in thin-walled moulded components from 0,8 mm in thickness made of
- steel,
- light alloy, – NF metal.

Dimensions in mm

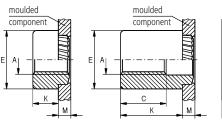
The nut is anchored in the component as a result of the press-in process.

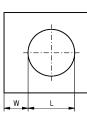
Fields of application, see page 12, fig. 6 (as Clifa[®]-M).

Article number	for sheet metal thickness	Internal thread	Internal thread	Collar diameter	Hole diameter	Minimum spacing	
	М	А	Е	E₁ ±0,05	L +0,05	w	
5 800 0	0,8 to 1,0	M 3	7,0	4,7	4,75	3,6	
5 800 1	1,1 to 1,4	M 4	8,0	5,35	5,40	3,8	
5 800 2	1,5 to 2,3	M 5	9,0	6,3	6,35	3,8	
5 800 3 from 2,4							
Example for findir the article numbe		t Clifa [®] -AM with inte thick film passivated					
	Nut heigh	t K available betw	een 3,0 and 25 mr	n in 1,0 mm gradu	uations		
	The second and third digit of the article number (5 03 800; 5 04 800; 5 05 800;; 5 25 800) are used to identify the nut height K, the seventh digit to differentiate the sheet thickness (503 800 1 30; 503 800 3 30).						
	With nut he	eights > 8,0 mm, the	usable thread length	remains C 7,5 mm.			
Materials	Steel harde Steel harde	Steel hardened, zinc plated, blue passivatedArticle no. (fourth group of digits)Steel hardened, zinc plated, transparent thick film passivatedArticle no. (fourth group of digits)Steel hardened, zinc-nickel plated, transparent passivatedArticle no. (fourth group of digits)Stainless steel 1.4305Article no. (fourth group of digits)Light alloyArticle no. (fourth group of digits)					
	Other finit	shes or special sha	pes on request.				
Tolerances	ISO 2768-n	1					
Thread	Internal thr	ead A: as per ISO 6H					
Press-in force	orce Guideline values for press-in force, see page 14						

Press-in nut / standoff bushings

for plastics


Clifa[®]-AL Works Standard 503 6 to 525 6


Application

These Clifa[®]-press-in nuts are particularly suited for creating torque-resistant screw connections capable of withstanding high loads in thin-walled moulded parts from 1,5 mm in thickness.

- Epoxy glass fibre
- Phenolic resin,
- Fibreglass (e.g. printing plates).

Also suitable for non-ferrous metals.

Dimensions in mm

Article number	Internal thread	External diameter	Workpiece thickness min.	Hole diameter	Minimum spacing		
	А	E	М	L +0,1	W		
5 600 020	M 2	6,0	1,5	3,7	2,2		
5 600 025	M 2,5	6,0	1,5	4,2	2,4		
5 600 030	M 3	7,0	1,5	4,2	2,4		
5 600 040	M 4	8,0	1,5	6,4	3,3		
5 600 050	M 5	9,0	1,5	6,8	4,1		
Example for finding the article number Diagonally serrated press-in nut Clifa®-AL with internal thread M3, nut height 8,0 mm, made of hardened, pre copper plated and tinned steel: Clifa®-AL 508 600 030.100							

Nut height K available between 3,0 and 25 mm in 1,0 mm graduations

The second and third digit of the article number is used to identify the nut height K. With nut heights > 9,0 mm, the usable thread length remains C 9,0 mm.

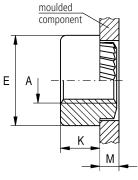
MaterialsSteel, hardened, pre copper plated and tinned
Stainless steel 1.4305

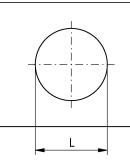
Article no. (**fourth** group of digits) 100 Article no. (**fourth** group of digits) 500

Other versions on request.

Tolerances ISO 2768-m

Thread Internal thread A: as per ISO 6H


Soldering nuts – collated version –



Application

These Clifa[®]-AL soldering nuts Are particulary suited for the Creation of torsion-proof screw unions with high bords. The nuts are fastened by soldering to the pcb. The nuts are supplied collated on a belt and can be using customary automatic SMD assembly devices.

- Cost saving due to processing with automatic SMD assembly devices
- no damage to pcbs (press-inprocess is eliminated)
- Process reliable assembly

Dimensions in mm

Article no.	Thread	Workpiece thickness min.	External diameter	Nut heigth	Hole diameter
	А	М	E	К	L +0,1
535 000 020	M 2	1,5	5,5	1,5	4,3
535 000 025	M 2,5	1,5	5,5	1,5	4,8
536 100 030	M 3	1,5	5,5	1,5	4,8
538 100 040	M 4	1,5	8,75	2,0	7,0
537 000 050	M 5	1,5	9,5	3,0	7,5

Example for finding Diagonally serrated press-in nut Clifa®-AL with internal thread M3, nut height 1,5 mm, made of hardened, the article number pre copper plated and tinned steel, collated on an belt: Clifa®-AL 536 100 030.134B

Material

Steel hardened, pre copper plated and tinned Steel hardened, pre copper plated and tinned and gluing pad

in accordance with DIN EN 60286-3 (type II blister belt)

Article no. (fourth group of digits) 134A Article no. (**fourth** group of digits) 134B

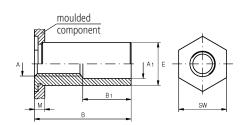
Other finishes or special shapes (e.g. standoff bushings) on request.

Colation

ISO 2768-m Tolerances

Internal thread A: as per ISO 6H Thread

Press-fit threaded standoff bushings – thru-hole-thread –


for metal

Clifa[®]-ABO Works Standard

570 0 to 570 1

Application

Clifa[®]-ABO press-fit threaded bushings are intended for the production of wear-resistant screw-connections in thinwalled moulded parts from thickness 1,0 mm. The hexagon is pressed flush into round mounting holes.

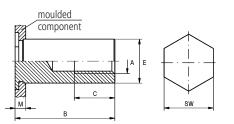
Article number of the <u>first grou</u> p of digits	Internal thread	Hexagon	for sheet metal thickness	External diameter	Counter bore diameter	Hole diameter	Minimum spacing
	Α	SW	М	E – 0,13	$A_1 \pm 0,13$	L +0,08	W
570 0	M 3	4,8	from 1,0	4,19	3,2	4,2	3,9
570 1	M 3	6,4	from 1,0	5,38	3,2	5,4	4,1
570 0	M 4	7,9	from 1,3	7,11	4,8	7,2	4,4
570 0	M 5	7,9	from 1,3	7,11	5,35	7,2	4,4

Article number of the <u>first grou</u> p of digits	Internal thread	Bushing length					
	А	B + 0,05/- 0,13					
030	M 3	3 – 8	9 – 12				
1 030	M 3	5 - 0	5 - 12				
040	M 4	3 – 8	9 – 15	16 – 21	22 – 25		
050	M 5	5 0	5 15	10 21	22 25		
Bore depth B ₁		none	4	8	11		

Example for finding the article number	Press-fit threaded bushing Clifa [®] -ABO with internal thread M4, b zinc plated, blue passivated steel for metal sheet thicknesses from	
	Bushing length B in intervals of 1,0 mm available.	
	The fourth digit of the article number is used to differentiate the a dimension M3, the fifth and sixth digit to identify the bushing lenge	
Materials	Steel hardened, zinc plated, blue passivated	Article no. (fourth group of digits) 110
	Other finishes or special shapes on request.	
Tolerances	ISO 2768-m	
Thread	Internal thread A: as per ISO 6H	

Press-in force as a guideline value for selection of the press

Clifa [®] ABO	Press-in force
M 3	20 to 25 kN
M 4	30 to 40 kN
M 5	40 to 50 kN


Press-fit threaded standoff bushings - blind thread -

for metal

Application

Clifa®-ABG is a press-fit threaded bushing with blind tapped hole nread) for the production of wearresistant, heavyduty screwconnections in thinwalled moulded parts from thickness 1,0 mm.

The hexagon is pressed flush into round mounting holes.

						Dimensions in mm
Article number of the <u>first grou</u> p of digits	Internal thread	Hexagon	for sheet metal thickness	External diameter	Hole diameter	Minimum spacing
	А	SW	М	E – 0,13	L +0,08	W
571 0	M 3	4,8	from 1,0	4,19	4,2	3,9
571 1	M 3	6,4	from 1,0	5,38	5,4	4,1
571 0	M 4	7,9	from 1,3	7,11	7,2	4,4
571 0	M 5	7,9	from 1,3	7,11	7,2	4,4

Article number of the <u>first grou</u> p of digits	Internal thread	Bushing length					
	А	B + 0,05/-0,13					
030	M 3	8 – 11	12 – 13	14 – 17	18 – 25		
1 030	M 3	0 11	12 15		10 25		
040	M 4	8 – 11	12 – 13	14 – 17	18 – 25		
050	M 5	0 11	12 - 15	17 17	10 25		
Thread leng	Thread length C		5	6,5	9,5		

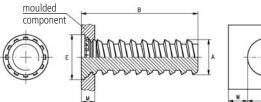
Example for finding the article number	Press-fit threaded bushing Clifa [®] -ABG with internal thread M4, b zinc plated, blue passivated steel for metal sheet thicknesses from	
	Bushing length B in intervals of 1,0 mm available.	
	The fourth digit of the article number is used to differentiate the a dimension M3, the fifth and sixth digit to identify the bushing lenge	
Materials	Steel hardened, zinc plated, blue passivated	Article no. (fourth group of digits) 110
	Other finishes or special shapes on request.	
Tolerances	ISO 2768-m	
Thread	Internal thread A: as per ISO 6H	

Press-in force as a guideline value for selection of the press

Clifa [®] ABG	Press-in force
M 3	20 to 25 kN
M 4	30 to 40 kN
M 5	40 to 50 kN

busning	V
(sealed t	h
of wearr	ρ

Press-in stud


with quick-fastening thread

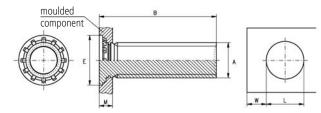
Clifa®-SPS Works Standard

510 3 to 534 3

Application

Clifa®-press-in stud with quickfastening thread is used to produce wear-proof screw connections. The coarse thread allows fixing elements such as clips, quick fasteners or assembly nuts to be simply pushed or turned on, eliminating the need for laborious screwing. Further benefit: Higher coating thicknesses do not impair the thread function.

Steel tempered, zinc plated, transparent thick film passivated ** Article no. (fourth group of digits) 112								Dimensions in mm		
A ≥ M B* E ±0,2 L +0,05 L ₁ +0,1 ≥ W 5 300 500 Ø 5,0 × 1,6 1,0 10,0 to 34,0 6,4 5,2 5,2 4,7 Example for finding the article number Press-in stud Clifa®-SPS, Ø 5,0, 10 mm long, tempered, zinc plated, transparent thick film passivated, with serrations at the head for sheet metal thickness 1,2 mm: Clifa®-SPS 510 300 030.112 Stud length available from 10,0 mm to 34,0 mm in 1,0 mm graduations. The second and third digit of the article number used for indentification of the length B. Article no. (fourth group of digits)		Thread	metal	Length						
Example for finding the article number Press-in stud Clifa®-SPS, Ø 5,0,10 mm long, tempered, zinc plated, transparent thick film passivated, with serrations at the head for sheet metal thickness 1,2 mm: Clifa®-SPS 510 300 030.112 Stud length available from 10,0 mm to 34,0 mm in 1,0 mm graduations. The second and third digit of the article number used for indentification of the length B. Materials Steel tempered, zinc plated, blue passivated ** Steel tempered, zinc plated, transparent thick film passivated ** Steel tempered, zinc nickel plated, transparent passivated ** Steel tempered, zinc-nickel plated, transparent passivated ** Article no. (fourth group of digits)		А		В*	E ±0,2	L +0,05	L ₁ +0,1	≥W		
the article number with serrations at the head for sheet metal thickness 1,2 mm: Clifa®-SPS 510 300 030.112 Stud length available from 10,0 mm to 34,0 mm in 1,0 mm graduations. The second and third digit of the article number used for indentification of the length B. Materials Steel tempered, zinc plated, blue passivated ** Steel tempered, zinc plated, transparent thick film passivated ** Steel tempered, zinc-nickel plated, transparent passivated ** Article no. (fourth group of digits)	5 300 500	Ø 5,0 x 1,6	1,0	10,0 to 34,0	6,4	5,2	5,2	4,7		
The second and third digit of the article number used for indentification of the length B. Materials Steel tempered, zinc plated, blue passivated ** Steel tempered, zinc plated, transparent thick film passivated ** Steel tempered, zinc-nickel plated, transparent passivated ** Article no. (fourth group of digits)										
Steel tempered, zinc plated, transparent thick film passivated ** Article no. (fourth group of digits)										
TolerancesISO 2768-mPress-in forceGuideline values for press-in force, see page 28.*) Length Bavailable up to 60 mm	Materials	Steel te	mpered, zinc pla	ted, transparent th	ick film passivated	** Article no. (fo	Article no. (fourth group of digits)			
Press-in forceGuideline values for press-in force, see page 28.*) Length Bavailable up to 60 mm		Furthe	r dimensions o	on request.						
*) Length B available up to 60 mm	Tolerances	ISO 276	58-m							
	Press-in force	Guide	Guideline values for press-in force, see page 28.							
**) Press-in stud in tempered steel, available in customary strength classes.	*) Length B	availa	available up to 60 mm							
	**)	Press-	Press-in stud in tempered steel, available in customary strength classes.							


Press-fit geometrie flush fit processed

Clifa[®]-SP Works Standard

506 0 to 534 0

Application

- Clifa[®]-SP press-in grub screws are processed flush with the surface – see diagram –, and are used to manufacture wear-resistant, highly resilient screw connections in thin-walled moulded parts made of:
- Steel
- Stainless steel
- Brass
- Copper
- Light metal, etc.

						Dimensions in mm
Article number	Internal thread	for sheet metal thickness	External diameter	Hole diameter	Minimum spacing	Tightening torque of the nut (guidline values for sheet metal)
	А	≥ M	E	L +0,05	≥W	≤ Nm
5 000 025	M 2,5	1,0	4,0	2,5	3,5	0,7
5 000 030	M 3	1,0	4,6	3,0	4,0	1,5
5 000 040	M 4	1,0	5,9	4,0	5,0	2,9
5 000 050	M 5	1,0	6,5	5,0	5,0	6,0
5 000 060	M 6	1,3	8,5	6,0	5,0	10,0
5 000 080	M 8	1,5	10,0	8,0	6,0	20,0

Article number <u>first grou</u> p of digits	Length		Available				
(selection series)	B*) ±0,2	M 2,5	M 3	M 4	M 5	M 6	M 8
506 000	6,0	Х	Х	Х	Х		
508 000	8,0	Х	Х	Х	Х	Х	
510 000	10,0	Х	Х	Х	Х	Х	Х
515 000	15,0	Х	Х	Х	Х	Х	Х
520 000	20,0	Х	Х	Х	Х	Х	Х
525 000	25,0	Х	Х	Х	Х	Х	Х
530 000	30,0			Х	Х	Х	Х
534 000	34,0			Х	Х	Х	Х

Example for finding Press-in stud Clifa®-SP, M3, 10 mm long, tempered, zinc plated, transparent thick film passivated, the article number with serrations at the head for sheet metal thickness 1,2 mm: Clifa®-SP 510 000 030.112

Materials

Tolerances

Steel tempered, zinc plated, blue passivated ** Article no. (**fourth** group of digits) 110 Steel tempered, zinc plated, transparent thick film passivated ** Article no. (fourth group of digits) 112

Steel tempered, zinc-nickel plated, transparent passivated ** Stainless steel Article no. (**fourth** group of digits) 500

Further dimensions on request.

Threaded ends Press-in grub screws with differing threaded ends on request, see data sheet, page 29.

Thread Stud thread A: as per ISO 6q, imperial thread available in all customary sizes.

Press-in force Guideline values for press-in force, see page 28.

ISO 2768-m

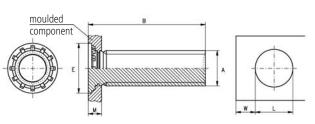
- *) Length B available up to 60 mm
 - Press-in stud in tempered steel, available in customary strength classes.

**)

Press-in stud

Press-fit geometrie flush fit processed

Clifa[®]-SPD Works Standard


506 2 to 534 2

Dimensions in mm

Application

- Clifa[®]-SPD press-in grub screws are processed flush with the surface – see diagram –, and are used to manufacture wear-resistant, highly resilient screw connections in thin-walled moulded parts made of:
- Steel
- Stainless steel
- BrassCopper
- Light metal, etc.

Due to the low height of the serrations, Clifa[®]-SPD is suitable for use in lower moulding strengths than necessary with Clifa[®]-SP.

Article number	Internal thread A	for sheet metal thickness ≥ M	External diameter E	Hole diameter L +0,05	Minimum spacing ≥ W	Tightening torque of the nut (guidline values for sheet metal) ≤ Nm
5 200 025	M 2,5	0,8	4,0	2,5	3,5	0,7
5 200 030	M 3	0,8	4,6	3,0	4,0	1,5
5 200 040	M 4	0,8	5,9	4,0	5,0	2,9
5 200 050	M 5	0,8	6,5	5,0	5,0	6,0
5 200 060	M 6	0,8	8,5	6,0	5,0	10,0

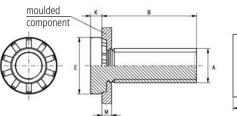
Article number <u>first grou</u> p of digits	Length			Availa	able	
(selection series)	B*) ±0,2	M 2,5	M 3	M 4	M 5	M 6
506 200	6,0	Х	Х	Х	Х	
508 200	8,0	Х	Х	Х	Х	Х
510 200	10,0	Х	Х	Х	Х	Х
515 200	15,0	Х	Х	Х	Х	Х
520 200	20,0	Х	Х	Х	Х	Х
525 200	25,0	Х	Х	Х	Х	Х
530 200	30,0			Х	Х	Х
534 200	34,0			Х	Х	Х

Example for finding the article number Press-in stud Clifa[®]-SPD, M3, 10 mm long, tempered, zinc plated, transparent thick film passivated, with serrations at the head for sheet metal thickness 0,8 mm: Clifa[®]-SPD 510 200 030.112

Materials

Further dimensions on request.

Threaded endsPress-in grub screws with differing threaded ends on request, see data sheet, page 29.TolerancesISO 2768-mThreadStud thread A: as per ISO 6g, imperial thread available in all customary sizes.Press-in forceGuideline values for press-in force, see page 28.*) Length Bavailable up to 60 mm**)Press-in stud in tempered steel, available in customary strength classes.



Press-fit geometrie processed protruding at the head

Clifa[®]-SA Works Standard 506 4 to 534 4

Application

- Clifa®-SA press-in grub screws are processed protruding at the head – see diagram –, and are used to manufacture wear-resistant, highly resilient screw connections in thin-walled moulded parts made of:
- SteelStainless steel
- Brass
- Copper
- Light metal, etc.

Dimensions in mm

Clifa®-SA has a strengthened head shape, making it more resilient to threading than Clifa®-SP.

Article number	Internal thread	for sheet metal thickness	External diameter	Head heigth	Hole diameter	Minimum spacing	Tightening torque of the nut (guidline values for sheet metal)
	А	≥ M	E	K ±0,1	L +0,1	≥W	≤ Nm
5 400 030	M 3	1,0	6,0	0,8	3	8,5	1,3
5 400 040	M 4	1,0	7,5	1,2	4	9,5	2,9
5 400 050	M 5	1,2	8,5	1,5	5	10,5	6,0
5 400 060	M 6	1,2	10,0	1,5	6	11,5	10,0
5 400 080	M 8	1,5	12,5	1,75	8	12,5	25,0
5 400 100	M 10	2,0	15,7	2,2	10	13,5	36,0

Article number <u>first grou</u> p of digits	Length			Availa	able		
(selection series)	B*) ±0,2	M 3	M 4	M 5	M 6	M 8	M 10
510 400	10,0	Х	Х	Х	Х		
512 400	12,0	Х	Х	Х	Х	Х	
515 400	15,0	Х	Х	Х	Х	Х	Х
520 400	20,0	Х	Х	Х	Х	Х	Х
525 400	25,0	Х	Х	Х	Х	Х	Х
530 400	30,0	Х	Х	Х	Х	Х	Х
534 400	34,0	Х	Х	Х	Х	Х	Х

Example for finding
the article numberPress-in stud Clifa®-SA, M5, 20 mm long, tempered, zinc plated, transparent thick film passivated,
for sheet metal thickness 1,2 mm: Clifa®-SA 520 400 050.112

Other dimensions on request

Threaded ends Press-in stud with several dog points on request. See data sheet on page 29.

Tolerances ISO 2768-m

Thread Stud thread A: as per ISO 6g

Press-in force Guideline values for press-in force, see page 28.

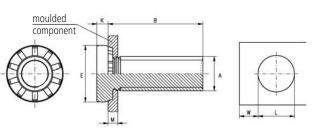
*) Length B available up to 60 mm

Press-in stud in tempered steel, available in customary strength classes.

**)

Press-in stud

Press-fit geometrie processed protruding at the head


Clifa®-SAD Works Standard

506 9 to 534 9

Application

- Clifa®-SAD press-in grub screws are processed protruding at the head – see diagram –, and are used to manufacture wear-resistant, highly resilient screw connections in thin-walled moulded parts made of:
- Steel
- Stainless steel
 Brass
- Copper
- Light metal, etc.

Due to the low height of the serrations, Clifa[®]-SAD is suitable for use in lower moulding strengths than necessary with Clifa[®]-SA.

Clifa[®]-SAD has a strengthened head shape, making it more resilient to threading than Clifa[®]-SPD.

							Dimensions in mm
Article number	Internal thread	for sheet metal thickness	External diameter	Head heigth	Hole diameter	Minimum spacing	Tightening torque of the nut (guidline values for sheet metal)
	А	≥M	E	K ±0,1	L +0,1	≥W	≤ Nm
5 900 050	M 5	1,0	8,5	1,5	5	10,5	6,0
5 900 060	M 6	1,0	10,0	1,5	6	11,5	10,0
5 900 080	M 8	1,2	12,5	1,75	8	12,5	25,0
5 900 100	M 10	1,2	15,7	2,2	10	13,5	36,0

Article number <u>first grou</u> p of digits	Length		Avai	lable	
(selection series)	B*) ±0,2	M 5	M 6	M 8	M 10
510 900	10,0	Х	Х		
512 900	12,0	Х	Х	Х	
515 900	15,0	Х	Х	Х	Х
520 900	20,0	Х	Х	Х	Х
525 900	25,0	Х	Х	Х	Х
530 900	30,0	Х	Х	Х	Х
534 900	34,0	Х	Х	Х	Х
Example for finding		d Clifa®-SA		<u> </u>	

Example for finding
the article numberPress-in stud Clifa®-SAD, M5, 20 mm long, tempered, zinc plated, transparent thick film passivated,
for sheet metal thickness 1,2 mm: Clifa®-SAD 520 400 050.112

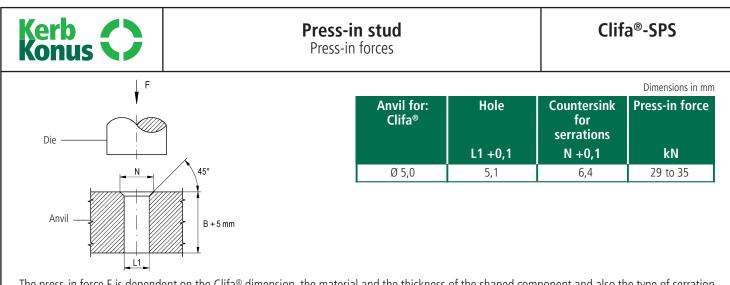
Other dimensions on request

Threaded ends Press-in stud with several dog points on request. See data sheet on page 29.

Tolerances ISO 2768-m

Thread Stud thread A: as per ISO 6g

Press-in force Guideline values for press-in force, see page 28.


*) Length B available up to 60 mm

**) Press-in stud in tempered steel, available in customary strength classes.

Kerb Konus 🗘		Clifa [®] -SP/SPD							
F				•	Dimensions in mm				
		Anvil for: Clifa®	Hole	Countersink for serrations	Press-in force				
Die	,		L1 +0,1	N +0,1	kN				
N -	45°	M 2,5	2,6	3,4	8,9 to 12				
		M 3	3,1	4,0	10,5 to 19				
		M 4	4,1	5,2	16 to 25				
Anvil	B + 5 mm	M 5	5,1	6,4	29 to 35				
		M 6	6,1	7,6	30 to 50				
L1_		M 8	8,1	10,2	30 to 60				

The press-in force F is dependent on the Clifa[®] dimension, the material and the thickness of the shaped component and also the type of serration at the head. The Clifa[®] head must be fully embedded and must come to rest flush with the surface of the sheet metal. Excessive force must be avoided.

The press-in force F is dependent on the Clifa[®] dimension, the material and the thickness of the shaped component and also the type of serration at the head. The Clifa[®] head must be fully embedded and must come to rest flush with the surface of the sheet metal. Excessive force must be avoided.

Kerb Konus 🗘	Press-in stud Press-in forces	Clifa [®] -SA/SAD							
			-	Dimensions in mm					
F	Anvil for: Clifa®	Hole	Countersink for serrations	Press-in force					
Die		L1 +0,1	N+0,1	kN					
	M 3	3,1	4,0	9,0 to 15,0					
	M 4	4,1	5,2	14,5 to 38					
	M 5	5,1	6,4	21 to 42					
Anvil B+5m	M 6	6,1	7,6	21 to 50					
	M 8	8,1	10,2	21 to 60					
	M 10	10,1	12,2	32 to 84					

The press-in force F is dependent on the Clifa[®] dimension, the material and the thickness of the shaped component and also the type of serration at the head. Excessive force must be avoided.

Threaded ends for press-in grub screws

Clifa[®]-SP/-SPD Clifa[®]-SA/-SAD

Application

Depending on the demands placed on the Clifa[®] press-in grub screws, we offer a variety of threaded ends. Further threaded ends on request.

Sub-function		Type of thr	eaded end	
Sub-function	KKV	KK	PN	KK-MAG
Protection of start of thread	Ľ	7	7	7
Larger displacement when fastening	R	→	7	Z
Prevention of tilting when fastening	Ŕ	→	\rightarrow	7
Usable thread length (Version for components of the same length)	7	→	\rightarrow	Ŕ

Type of threaded end: **KKV** DIN EN ISO 4753 (RL)

Type of threaded end: KK

Type of threaded end: PN

Type of threaded end: KK-MAG

Fasteners for special applications ...

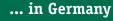
Notes

												 			_					
															_					
															_					
															-					
															_					
															_					
															_					
															_					
															_					
															_					
															_					
																			\rightarrow	

KerbKonus – close to its customers. Around the world. Across every sector of industry.

First and foremost, for you customer proximity means a rapid response to your requirements and the fast, efficient realisation of the right fastening solution for you.

Detailed informations for further products and applications get in our technical publications.



Kerb-Konus-Vertriebs-GmbH P.O.Box 1663 92206 Amberg

No.20

Phone	+49 9621 679-0
Fax	+49 9621 679444
e-mail	KKV-Amberg@kerbkonus.de

Internet www.kerbkonus.de

Amberg Headquarters Production and Sales

Kerb-Konus-Vertriebs-GmbH Wernher-von-Braun-Straße 7 92224 Amberg Production plant Hadamar

... and around the world.

Kerb-Konus Fasteners Pvt. Ltd. Kolhapur/India

K.K.V. Corporation Japan Osaka/Japan

KKV AG Zug/Switzerland

Kerb Konus

Konus

No.60

Precision Fasteners Inc. Somerset, New Jersey/USA

Kerb-Konus Italia s.r.l. Mulazzano (LO)/Italy Kerb-Konus UK Rugeley, Staffordshire/UK

Kerb-Konus Espanola S. A. Navalcarnero, Madrid/Spain

KKV Belgium Aalst/Belgium

Sofrafix Paris/France

Other foreign agents in a wide number of countries. Addresses on request or under www.kerbkonus.de

